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We study characteristic features of the temperature and pressure dependences of the volume and high-spin
fraction of spin-crossover solids. We develop a model and method of molecular dynamics �MD� in the isobaric-
isothermal ensemble to treat the motion of the intramolecular totally symmetric mode, taking into account the
entropy effect from other modes. We find several interesting observations, e.g., a nonmonotonic temperature
dependence of the volume. Sigmoidal relaxations from the excited high-spin state �photoinduced state�, which
were often observed in experiments, are automatically reproduced in the present deterministic dynamics of
MD, although it has previously been studied by assuming Arrhenius transition probabilities in stochastic
dynamics.
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Spin-crossover �SC� complexes have attracted much at-
tention for their potential applicability to electronic devices,
e.g., optical data storage, optical sensors, etc. They exhibit
switching phenomena between the low-spin �LS� and high-
spin �HS� states, i.e., SC transitions by change of external
perturbations such as temperature, pressure, magnetic field,
light irradiation, etc.1–7 It is considered that the cooperative
nature of the interactions between molecules is the key to
understand the mechanisms of SC transitions.

For studies of the cooperative nature, Ising-like models
have often been studied because of their simple
descriptions.8–12 On the other hand, several studies have been
done on the role of elastic interactions, and their importance
in SC has been pointed out.13–24

It is well admitted that entropy effects are a key factor for
SC phenomena. The entropy change between the LS and HS
states, �S=NkB ln

gHS

gLS
, takes place with

gHS

gLS
=O�100�

−O�1000� in experiments, where N is the number of mol-
ecules and

gHS

gLS
is the ratio of degeneracies between the HS

and LS states. The dominant contribution to the entropy is
intramolecular vibrations with many modes.25

In a previous study,21 we attributed the entropy difference
between the LS and HS states to one intramolecular vibra-
tional mode �totally symmetric mode�, where different fre-
quencies of the HS and LS states �

gHS

gLS
=

1/�HS

1/�LS
=10� were given.

Thus, the potential there was unrealistically deformed �in
real compounds,

1/�HS

1/�LS
�2�. Although we succeeded to cap-

ture characteristic features of the SC transition, the value
gHS

gLS
=10 was still small compared with realistic values

O�100�−O�1000�. Even for this value, we sacrificed the re-
alistic potential form. Therefore, investigations of detailed
features and quantitative analyses of SC phenomena were
impossible. In general, in MD, the density of state, i.e., the
entropy is determined by a given potential uniquely and it is
difficult to control it arbitrarily.

In order to investigate quantitatively the dependences of
the system volume and the HS fraction on external perturba-
tions, e.g., temperature, pressure, etc. and also dynamical
properties, it is necessary to have a formulation to use a
realistic intramolecular potential for the totally symmetric
mode and simultaneously to treat a large

gHS

gLS
mainly originat-

ing from other modes and spins. In the present study, we
develop a model and method which enables us to realize this
goal. We also extend the model to control not only tempera-
ture �T� but also pressure �P�. We give equations of real-time
dynamics of molecular dynamics �MD� for the isobaric-
isothermal �i.e., N, P, T� ensemble.

Applying this unique formulation, we find nontrivial be-
havior of the T dependences of the system volume �V� and
the HS fraction �fHS� under constant pressure. We also inves-
tigate relaxation dynamics from the excited HS state �photo-
induced state� for various T and P. In experiments, charac-
teristic sigmoidal curves in the relaxation process were often
observed,26 and Arrhenius transition probabilities10 have
been assumed to reproduce them in Monte Carlo methods.
Here, we obtain sigmoidal curves automatically in the
present MD simulations.

First, we consider the following Hamiltonian:21

H0 = �
i=1

N
Pi

2

2M
+ �

i=1

N
pi

2

2m
+ �

i=1

N

Vi
intra�ri� + �

�i,j�
Vij

inter�Xi,X j,ri,rj� .

�1�

The intramolecular potential energy Vi
intra�ri� is a function of

the radius ri of the ith molecule, pi is the corresponding
momentum, and m is the mass. Here, �ri , pi� represents the
motion of the totally symmetric mode, which is the most
important mode.25 The intermolecular potential between the
ith and jth molecules is denoted by Vij

inter�Xi ,X j ,ri ,rj�, where
Xi= �Xi ,Yi� is the coordinate of the center of the ith molecule
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	see Fig. 1�a�
. The corresponding momentum is Pi
= �PXi

, PYi
�, and the mass of the molecule is M.

The intramolecular LS potential �y=ax2� and HS one
	y=b�x−c�2+d
 	see Fig. 1�b�, broken lines
 are mixed by
the off-diagonal element J, which causes the intramolecular
adiabatic potentials20,21,24 for the symmetric mode: V�x��

= A
2 �d+b�c−x�2+ax2��4J2+ 	d+b�c−x�2−ax2
2�. The func-

tions V�x�� are plotted in Fig. 1�b�, where x is defined as the
difference of the radius from that of the ideal LS state �rLS�:
r=rLS+x. We adopt the double-well potential V�x�− for
Vi

intra�ri�, where x=0 and 1 correspond to ideal LS and HS
states, respectively. The radius of the ideal HS state is thus
rHS=rLS+1.

The entropy difference due to the intramolecular potential
between the LS and HS states is given by �S=SHS−SLS

=NkB ln
�LS

�HS
, where �LS=�2a /m and �HS=�2b /m. In the

present study, a realistic value of the ratio,
�LS

�HS
=2, is

adopted.25 For this purpose, we take a=4 and b=1, and we
set the other parameters for Vi

intra�ri� as A=10, c=1.0, d
=0.2, J=0.3, and rLS=9.

Since H0 provides a small entropy change �S�NkB ln 2,
it needs to include the entropy difference from other degrees
of freedom, i.e., other intramolecular vibrations and also
spins. We express the potential of other intramolecular vibra-
tions as V�=�kmk�k

2uk
2 /2, where k is the index of modes. The

value of �k may differ in the LS ��k
LS� and HS ��k

HS� states.9

The ratio of the total densities of states of these modes for

the LS and HS states is described as �k
�k

LS

�k
HS for each

molecule.9 The degeneracy of spin �2Ŝ+1� also contributes
to the extra entropy. Thus, the entropy change due to these

modes and spins is given by �S��NkB ln�k
�k

LS

�k
HS

2ŜHS+1

2ŜLS+1
.

In order to express this extra entropy difference, we intro-
duce an oscillator �u0i� for each molecule,

Hph = �
i=1

N
p0i

2

2m0
+ �

i=1

N
1

2
m0�̄0i

2 u0i
2 . �2�

The eigenfunction �ground state� for V�x�− is 
�g�x��
=��x�
LS�x��+��x�
HS�x��, and that for V�x�+ is


�e�x�� = − ��x�
LS�x�� + ��x�
HS�x�� .

Then,

��x�2 = 
�HS�x�
�g�x��
2

gives the HS component of each molecule.
The inverse of the frequency is proportional to the density

of states of the oscillator, and thus �̄0i is given by

1

�̄0i

=
��xi�2

�̄0LS

+
��xi�2

�̄0HS

, �3�

where �̄0LS and �̄0HS are frequencies for the LS and HS

states, and the ratio is given by
�̄0LS

�̄0HS
=�k

�k
LS

�k
HS

2ŜHS+1

2ŜLS+1
. In the

present study, we set
�̄0LS

�̄0HS
=100 ��̄0HS=1�. Because

�LS

�HS
=2,

the ratio of the total densities of states is
gHS

gLS
=200.

Following Ref. 21, we adopt the intermolecular potential
Vij

inter�Xi ,X j ,ri ,rj� between the nearest neighbors �ith and jth
molecules� and next-nearest neighbors 	i and k, see Fig.
1�a�
, where D is the strength of the intermolecular interac-
tion.

To control both pressure �P� and temperature �T� in this
MD, the Andersen formalism with the Nosé-Hoover
method27–29 is applied to this system. The Hamiltonian of the
thermal reservoir and that for the pressure control are given

by Htherm=
Ps

2

2Q +4NkBT ln s and HP= �2

2M�
+ PV, respectively,

where s is a scaling factor, Ps and � are the conjugate mo-
menta of s and the volume V, and Q and M� are effective
masses associated with s and V, respectively.27–29 The total
Hamiltonian including the external environment is given by
Htotal=H0+Hph+Htherm+HP. Finally we have the following
equations of motion for the real-time dynamics:

dri

dt
=

pi

m
+

ri

ndV

dV

dt
, �4�

dpi

dt
= −

�Vintra

�ri
−

�Vinter

�ri
−

�Vph

�ri
−

pi

ndV

dV

dt
− 	pi, �5�

dXi

dt
=

Pi

M
+

Xi

ndV

dV

dt
, �6�

dPi

dt
= −

�Vinter

�Xi
−

Pi

ndV

dV

dt
− 	Pi, �7�

du0i

dt
=

p0i

m0
, �8�

dp0i

dt
= −

�Vph

�u0i
− 	p0i, �9�

ds

dt
= s	 , �10�

d	

dt
=

1

Q��
i

pi
2

m
+ �

i

Pi
2

M
+ �

i

p0i
2

m0
− 4NkBT� , �11�

dV

dt
= s

�

M�

, �12�

i
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FIG. 1. �Color online� �a� Molecules of LS �blue, upper right�,
HS �red, lower�, and intermediate �green, upper left� states. �b� In-
tramolecular potentials V�x�− �blue, lower� for the ground state and
V�x�+ �red, upper� for the excited state. x is the growth of r from
rLS. The broken lines are LS �left� and HS �right� potentials.
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d�

dt
=

s

ndV��
i

pi
2

m
− �

i
� �Vintra

�ri
+

�Vinter

�ri
�ri + �

i

Pi
2

M

− �
i

�Vinter

�Xi
· Xi − ndVP� , �13�

where Vinter stands for the summation of the intermolecular
potentials for the nearest and next-nearest pairs, Vph is the
potential of Eq. �2�, nd�=2� is the system dimension, and 	

�
Ps

Q .
Here, we assume that the totally symmetric vibration and

intermolecular interactions determine the volume under a
given pressure, but that the oscillator 	Eq. �2�
 does not have
direct influence on the volume and only produces the entropy
difference. It should be noted that Eq. �13�, which gives the
Virial theorem at equilibrium, does not contain the motion of
the oscillator 	Eq. �2�
. �Note that u0i and p0i are not rescaled
by the system volume.� The details of the present formula-
tion will be reported elsewhere.30

We treat a system of N=L2=20
20 molecules with a
periodic boundary condition, and employ an operator decom-
position method in which the numerical error is O��t3�.31 We
set m=1.0, M =1.0, m0=1.0, M�=0.2, and Q=1.0.21 MD
simulations were performed on a simple square lattice �V is
the area or unit volume along the c axis�, but the extension to
three dimensions is straightforward.

First, we study the dependences of V and fHS on T as
functions of D. We define the normalized volume: Vn

=
V−VLS

VHS−VLS
, where VLS �VHS� is the volume for rLS �rHS�. The

HS fraction24 is defined as fHS�� 1
N�i=1

N ��xi�2�, where �¯�
means the statistical average. Here, the system was warmed
up from T=0.1 to 5.0 in steps of increment 0.1 under the
pressure P=0.001, and then cooled down to the initial tem-
perature T=0.1. At each temperature, 200 000 MD steps
were discarded as transient time and the subsequent 100 000
MD steps were used to measure physical quantities with the
MD time step �t=0.01.

In Fig. 2, the dependences of fHS and Vn on T are depicted
for several values of D.32 The temperature dependence
changes from a gradual crossover for small D 	Fig. 2�a�
 to a
first-order transition for large D 	Figs. 2�b�–2�d�
. In the
warming process, fHS increases and approaches a saturated
value ��1�, while Vn increases at high temperatures and fi-
nally exceeds 1. It is worth noting that Vn �V� has a linear
dependence on T at high temperatures. This linear depen-
dence has often been assumed in analyses of V-T curves in
experiments with the use of phenomenological lattice expan-
sion models.33,34 Here, we demonstrated this linear depen-
dence which verifies this assumption from the viewpoint of a
microscopic treatment. We estimate the thermal expansion
dVn /dT=0.050 at high temperatures �2�T�5� for �a� and
dVn /dT=0.037 for �b�, indicating that the thermal expansion
in the weaker interaction case is larger.

We find characteristic features for the T dependence of
fHS, which drastically change depending on D. In cases �a�
and �b�, fHS continues to decrease in the cooling process. For
larger D, i.e., cases �c� and �d�, however, fHS increases during
the cooling process when the state is in the HS phase al-

though fHS is almost constant at high temperatures. In these
cases, the HS metastable state at low temperatures has larger
fHS at lower T. This is similar to the strong-interaction case
of the short-range Ising-like model.12

We also find interesting observations of the T dependence
of Vn, which exhibits different features from fHS. For smaller
D 	�a� and �b�
, Vn also decreases in the cooling process. For
larger D, e.g., �c� and �d�, in contrast to fHS, Vn decreases
during the cooling process at high temperatures, goes
through a minimum value, and then increases again at lower
T.

This suggests that at low temperatures where the meta-
stable HS state exists, due to the small thermal fluctuation
the state of the molecules tends to be around the minimum
point of the HS intramolecular potential �x=1�. At higher
temperatures, the state of the molecules can change over the
barrier to the LS state and some HS molecules change to LS
molecules. Consequently, the volume is reduced. Therefore,
the derivative of V, �V

�T , is negative, which leads to negative
thermal expansion.

Next, we focus on the relaxation dynamics from the ex-
cited HS state. We observe the relaxation from the HS meta-
stable state.3,12 Figure 3 shows relaxation curves for various
T and P. It is found that relaxations occur with sigmoidal
curves at various T. In the case of T=0.15, the relaxation
does not occur within the measurement time, and when the
temperature is increased, the relaxation speed is accelerated.

If higher pressure P is applied 	Fig. 3�b�
 because the LS
state is favored, the decay time becomes shorter. The meta-
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FIG. 2. �Color online� Temperature dependences of Vn �blue
circles� and fHS �red squares� for the values of �a� D=5, �b� D
=12, �c� D=12.9, and �d� D=15 under P=0.001. Linear depen-
dence of Vn is shown in the insets for �a� and �b�. The T dependence
around the region of the minimum Vn is focused on in the insets for
�c� and �d�.
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stable state becomes unstable, not only with temperature but
also with pressure. It should be noted that the sigmoidal
shape is maintained at different P, which is consistent with
experiments.26 We have shown that fHS relaxes with a sig-
moidal curve. This dependence is attributed to the self-
acceleration mechanism due to the local energy barrier and

cooperativity. Here, sigmoidal relaxations are automatically
yielded as a result of the deterministic dynamics.

We have studied the characteristics of T and P depen-
dences of fHS and V developing a model of elastic interac-
tions and a method of MD. A nonmonotonic temperature
dependence of V has been demonstrated. Negative and zero
thermal expansions35 are one of the topics of molecular sol-
ids. Our observation will promote researches for the unusual
behavior of thermal expansion. Typical sigmoidal relaxations
with T and P dependences from the excited high-spin state
�photoinduced state� are automatically reproduced as a result
of the deterministic MD dynamics. To our knowledge, this is
the first observation of sigmoidal curves from deterministic
dynamics based on a microscopic model of SC.
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FIG. 3. �Color online� �a� T dependence of the relaxation curve
of fHS from the HS state at P=0.001 for D=12. �b� P dependence
of the relaxation curve of fHS from the HS state at T=0.15 for D
=12.
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